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Abstract
This paper is a review of aspects of supergravity theories that are relevant
in superstring cosmology. In particular, it considers the possibilities and
restrictions for ‘uplifting terms’, i.e., methods to produce de Sitter vacua.
We concentrate on N = 1 and N = 2 supergravities, and the tools of
superconformal methods, which clarify the structure of these theories. Cosmic
strings and embeddings of target manifolds of supergravity theories in others
are discussed briefly at the end.

PACS numbers: 04.65.+e, 11.25.−w, 11.30.−j

1. Introduction

Many people studying string theory nowadays study the landscape of vacua that are possible
in the context of the different string theories and related to different compactifications of
the ten-dimensional spacetime. The resulting vacua each lead to an effective supergravity
describing the low-energy physics close to this vacuum. In this sense, the landscape of string
theories is a landscape of supergravity theories.

The basic superstring theories already have a supergravity as field theory approximation.
After the choice of a compact manifold one is left with an effective lower dimensional
supergravity whose number of supersymmetries is determined by the Killing spinors of the
compact manifold. Fluxes on branes involved in the string set-up and non-perturbative effects
lead to ‘gauged supergravities’. These are supergravity theories that are not only the gauge
theory of supersymmetry, but also of an extra ordinary Lie group. The combination of
supersymmetry with these ordinary gauge symmetries requires some special care.

Though we have discussed supergravity here in the context of superstring theories, the
reader should be warned that not every supergravity theory can (so far as we know nowadays)
be obtained from a superstring set-up. The set of supergravities that is related to superstring
theories has been enlarged in different ways in the past. For example, there was a time when
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Table 1. Superalgebras with bosonic subalgebra a direct product of (anti) de Sitter algebra and
R-symmetry.

AdS Superalgebra R-symmetry

D = 4 OSp(N |4) SO(N)

D = 5 SU(2, 2|N) N �= 4 : SU(N) × U(1)

N = 4 : SU(4)

D = 6 F 2(4) SU(2)

D = 7 OSp(8∗|N) N even: USp(N)

dS Superalgebra R-symmetry

D = 4 OSp(m∗|2, 2) m = 2 SO(1, 1)

m = 4 SU(1, 1) × SU(2)

m = 6 SU(3, 1)

m = 8 SO(6, 2)

D = 5 SU∗(4|2n) n = 1 SO(1, 1) × SU(2)

n = 2 SO(5, 1)

D = 6 F 1(4) SU(2)

one did not know how any gauged supergravity would be obtained from superstring theory. It
is an open question whether in the future every supergravity theory can be given an embedding
in a superstring theory, but it does not look like that will be the case.

In section 2 we will repeat the problems with producing de Sitter vacua in supergravity
and the related issue of uplifting terms. Section 3 will give an overview of the various
supergravities. But we will then further concentrate on N = 1 (and sometimes N = 2) and
give the general structure of these theories in section 4. A way in which the structure of these
supergravities can be understood is the superconformal method, as we explain in section 5.
The final remarks in section 6 mention the application of supergravity for the construction
of effective theories of cosmic strings and the issue of embedding of a smaller supergravity
theory in a larger one.

2. Cosmology and uplifting terms

Supergravity faced already from the early dates a main problem for its application in
cosmology. Cosmological constants can easily be produced, but its natural scale would
be of the order of the fourth power of the gravitational constant, which is an order of 10120

too large, a ‘world record of discrepancy between theory and experiment’. Apart from this
problem, whose resolution needs massive parameters of another scale, another main problem
is the sign of the cosmological constant. Indeed, we have to give up the idea of having a
supersymmetric vacuum state. This statement is by now well known, but let us repeat the
argument.

It follows from algebraic considerations. If supersymmetry is preserved, there should
be a superalgebra of isometries in the vacuum state. This superalgebra should contain the
de Sitter algebra if the cosmological constant is positive. Such superalgebras have been
classified, and let us compare the situation for anti-de Sitter superalgebras with de Sitter
superalgebras in table 1 [1]. The de Sitter superalgebras [2–4] have typically a non-compact
R-symmetry subalgebra1, which leads to non-definite signs in the kinetic terms, and hence to
ghosts. Therefore, de Sitter vacua can occur in physical supersymmetric theories only in a

1 We mention here the superalgebras that are of Nahm’s type [5], i.e., where the bosonic subgroup is a direct product
of the de Sitter algebra and another simple group, called R-symmetry. More general de Sitter superalgebras have
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phase where supersymmetry is completely broken. This might even be welcome in view of
the fact that supersymmetry breaking is anyhow necessary to make contact with reality.

As mentioned in the introduction, supergravity is the field theory corresponding to
superstring theory. For calculations with string theories it is useful to find an effective
supergravity description. If one wants to describe realistic cosmological models, one needs
‘uplifting’ terms’ to raise the value of the cosmological constant. This is, e.g., one of the
main issues in the KKLT [8] models. Another example is the effective theory of the cosmic
string.

The Abrikosov–Nielsen–Olesen string model has a vector field Wµ(x) and a complex
scalar φ(x), charged under the gauge symmetry of the vector field (coupling constant g). It
uses as potential

V = 1
2D2 ≡ 1

2g2(ξ − φ∗φ)2, (2.1)

depending on a constant ξ . The configuration is independent of one of the three spatial
directions, and, using polar coordinates (r, θ) in the remaining 2-plane, it is of the form

φ(r, θ) = |φ|(r) eiθ , gWµ dxµ = α(r) dθ, (2.2)

where the function |φ|(r) is zero at r = 0, and thus D = gξ at that point, while it goes to
a constant value

√
ξ at infinity, leading to a vanishing D. The vector is determined by the

requirement that the field strength in the plane directions, F12, is equal to D. When this model
is considered in the context of supersymmetry, it is a 1/2 BPS solution [9, 10]. This model
can be embedded in supergravity [11, 12] (see [13, 14] for 3 spacetime dimensions), due to a
conspiracy of the spin connection and the R-symmetry connection.

The model can then be seen as the final state after the D3-brane–anti-D3-brane
annihilation, which leads to a D1 string. The field φ is the tachyon field, and the so-called
Fayet–Iliopoulos term ξ represents the brane–antibrane energy [11]. In general, it leads to a
positive term in the potential, which is the uplifting that we need in this case in an effective
supergravity model.

3. Supergravities

Supergravity exists in many variants. We restrict here to theories where the terms in the action
are at most quadratic in spacetime derivatives. Table 2 plots the possible supergravities for
dimensions larger or equal to 4. A longer discussion on this table and an extension thereof is
given in [15]. The theories with 16 or less real components of the supersymmetry operator
allow different additions of matter multiplets to the supergravity multiplet. Suppose now that
we have selected an entry in this table. Thus we have chosen a dimension D and a number
of supersymmetries (N or Q as you like). Furthermore, assume that for Q � 16, one has
also specified the number and type of extra multiplets. For example, in D = 4, N = 1 one
already tells that one wants a theory with 1 vector multiplet and 2 chiral multiplets. How
far is the theory then already fixed? In other words, what has still to be determined in order
to completely specify the action? The answer is different depending on the range of the
number Q.

32 � Q > 8. In this case, the kinetic terms of all the fields are already fixed. The only extra
information that one needs is the symmetry group that is gauged by the vector fields and its
action on the scalars. Once this is known, the full action is fixed. In particular, the scalar
potential of the theory depends on this gauging.

been classified in [6, 7]. But they have not been realized in concrete models, probably because of the appearance of
symmetries that are not in the de Sitter algebra and do not commute with it.
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Table 2. Supersymmetry and supergravity theories in dimensions 4 to 11. An entry represents
the possibility to have supergravity theories in a specific dimension D with the number of (real)
supersymmetries indicated in the top row. At the bottom is indicated whether these theories exist
only in supergravity, or also with just rigid supersymmetry.

D 32 24 20 16 12 8 4

11 M
10 IIA IIB I

9 N = 2 N = 1
8 N = 2 N = 1
7 N = 4 N = 2
6 (2, 2) (2, 1) (1, 1) (2, 0) (1, 0)

5 N = 8 N = 6 N = 4 N = 2
4 N = 8 N = 6 N = 5 N = 4 N = 3 N = 2 N = 1

SUGRA SUGRA/SUSY SUGRA SUGRA/SUSY

Table 3. Scalar geometries in theories with more than eight supersymmetries (4 � D � 9).

D 32 24 20 16 12

9 S�(2)
SO(2)⊗O(1,1)

O(1,n)
O(n)

⊗ O(1, 1)

8 S�(3)
SU(2)

⊗ S�(2)
U(1)

O(2,n)
U(1)×O(n)

⊗ O(1, 1)

7 S�(5)
USp(4)

O(3,n)
USp(2)×O(n)

⊗ O(1, 1)

6 O(5,5)
USp(4)×USp(4)

SO(5,1)
SO(5)

O(4,n)
O(n)×SO(4)

⊗ O(1, 1)
O(5,n)

O(n)×USp(4)

5 E6
USp(8)

SU∗(6)
USp(6)

O(5,n)
USp(4)×O(n)

⊗ O(1, 1)

4 E7
SU(8)

SO∗(12)
U(6)

SU(1,5)
U(5)

SU(1,1)
U(1)

× SO(6,n)
SU(4)×SO(n)

SU(3,n)
U(3)×SU(n)

Q = 8. In this case, apart from the gauging, also the kinetic terms can still vary. These
kinetic terms are restricted, but can still depend on some arbitrary prepotential function. The
geometry determined by the kinetic terms of the scalars falls in a restricted scheme, which
is called ‘special geometry’. Once one has chosen the particular special geometry and the
gauging, the action (and as such, e.g., the scalar potential) is fixed.

Q = 4. Also in this case the gauge group and its action on scalars has to be determined.
Moreover, some arbitrary functions determine the kinetic terms. For example, for the chiral
multiplets there is the Kähler potential, and for the vector multiplets the kinetic terms are
determined by a holomorphic functions of the complex scalars of the chiral multiplets. In
this case, the potential depends moreover on a superpotential function W , and in some cases
(Abelian gauge groups) on arbitrary constant ‘Fayet–Iliopoulos’ constants as the ξ in (2.1).
There are consistency conditions between the choice of these different ingredients. The
gauging and the Fayet–Iliopoulos constants should be compatible in some way with the choice
of kinetic terms and superpotential.

To illustrate that the restrictions on the kinetic terms, we present here table 3 of scalar
manifolds in theories with more than eight real supercharges. The theories are ordered as in
table 2. For more than 16 supersymmetries, there is only a unique scalar manifold, while for
16 and 12 supersymmetries there is a number n indicating the number of vector multiplets that
are included.

For 8 supersymmetries, the table is

D = 6 D = 5 D = 4
O(1,n)

O(n)
× QK V SR × QK SK × QK

(3.1)
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Table 4. Multiplets of particles in N = 1 and N = 2 in 4 dimensions.

N = 1 N = 2

Graviton multiplets
(
2, 3

2

)
Graviton multiplet

(
2, 3

2 , 3
2 , 1

)

Vector multiplets
(
1, 1

2

)
Vector multiplets

(
1, 1

2 , 1
2 , 0, 0

)
Special Kähler

Chiral multiplets
( 1

2 , 0, 0
)

Kähler Hypermultiplets
( 1

2 , 1
2 , 0, 0, 0, 0

)
Quaternionic-Kähler

Here, ‘VSR’ stands for ‘very special real’ geometry, ‘SK’ for special Kähler geometry
and ‘QK’ for quaternionic-Kähler geometry. This thus only specifies a geometric class of
manifolds, but they are not uniquely determined.

We now look at the other issue—the gauge group. The number of generators of the gauge
group is equal to the number of vector fields2. This counting includes as well vectors in the
supergravity multiplet and those in vector multiplets. In fact, in general their kinetic terms are
mixed and thus they do not have to be distinguished. The gauge group is in principle arbitrary,
but to have positive kinetic terms gives restrictions on possible non-compact gauge groups for
any supergravity. The symmetries that they gauge act on the other fields. In particular, it is (a
subgroup of) the isometry group of the scalar manifold.

For most applications in cosmology the final effective theory has only four or eight real
supersymmetries. We will now focus our attention to 4 dimensions, and thus to N = 1 or
N = 2 theories, as well as to the geometry that describes the kinetic terms of the scalars.

4. N = 1 and N = 2 supergravities

The multiplets of particles with spin up to 2 that can be considered in these theories are given
in table 4. The actions of the bosonic sector look like (with ∇ the gauge-covariant derivative)

e−1LN=1|bosonic = 1
2R − 1

4 (Re fαβ)F α
µνF

µνβ + 1
8 e−1εµνρσ (Im fαβ)F α

µνF
β
ρσ

− gī (∇µφi)(∇µφ̄
̄
) − VN=1,

e−1LN=2|bosonic = 1
2R + 1

4 (Im NIJ )F I
µνF

µνJ + 1
8 e−1εµνρσ (Re NIJ )F I

µνF
J
ρσ

− gαβ̄(∇µzα)(∇µz̄β̄ ) − 1
2gXY ∇µqX∇µqY − VN=2. (4.1)

For N = 1, α labels the vector multiplets, and i, ı̄ label the complex scalars. For N = 2,
the complex scalars of the vector are labelled by α, ᾱ = 1, . . . , nV . The nV vectors combine
with the vector of the gravity multiplet, leading to the label I = 0, 1, . . . , NV . The 4nH real
scalars of the hypermultiplets are labelled by the index X. In (4.1), gī , gαβ̄ and gXY are thus
the metrics of the scalar manifolds mentioned in table 4. fαβ are holomorphic functions of the
scalars φi , which should just satisfy some consistency conditions with the gauge group. But
the analogous functions NIJ are complex functions that are determined already by the special
Kähler geometry. This brings us to the last terms—the scalar potentials.

For N = 1, the potential is determined by a holomorphic superpotential W(φ) and by the
gauging. The latter means that the action of the gauge group on the scalar manifold determines
part of the potential. It was mentioned above that for N � 2 the potential is only determined
by gauging. This means here that it can be written as a function of the way in which the gauge
group acts on hypermultiplets and vector multiplet scalars, encoded in the ‘Killing vectors’.
Vector multiplet scalars are by the structure of the multiplet in the adjoint of the gauge group.
That determines already their Killing vectors. For the hypermultiplets, the manifold can have a

2 One could say less or equal, but considering that any vector transforms at least as δWµ = ∂µα, even if the α

transformation does not act on anything else, we can say that there is a U(1) factor.
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group of isometries, of which a subgroup can be gauged by the vectors of the vector multiplets.
It is a general fact (Ward identity) in supersymmetry that the scalar potential can be written as
a sum of the square of the scalar part of the supersymmetry transformations of the fermions,
where the way in which the square must be taken is determined by the metric [16–18]. We
illustrate this here for N = 1 supergravity. The potential can be written as

V = −3M−2
P F0F̄0 + Fig

ī F̄̄ + 1
2Dα(Re fαβ)Dβ, (4.2)

where MP is the Planck mass, F0 appears in the supersymmetry transformation of the gravitino,
Fi in that of the chiral fermions and Dα in that of the gaugini as in

δψµL = (
∂µ + 1

4ωµ
ab(e)γab + 1

2 iAB
µ

)
εL + 1

2M−2
P γµF0εR,

δχi = 1
2 ∂̂/ φiεR − 1

2FiεL, δλα = 1
4γ µνF α

µνε + 1
2 iγ5D

αε.
(4.3)

The quantities AB
µ, ωµ

ab(e), and the ∂̂ depend on fields in a way that is not relevant here (see,
e.g., [12]). The first two terms in (4.2) are called the F-terms and the last term is the D-term.
The former depend on the superpotential W (and on the Kähler potential at order M−2

P ). The
D-term depends on the gauge transformations of the scalars (and also on the Kähler potential)
and can depend on arbitrary Fayet–Iliopoulos constants ξα for U(1) factors.

5. Superconformal methods

The superconformal method offers a simplification of supergravity by using a parent rigid
supersymmetric theory. A conceptual difference between supersymmetry and supergravity
is that the concept of multiplets is clear in supersymmetry but they become mixed in
supergravity. This makes superfields an easy tool for rigid supersymmetric theories, but
much more complicated for supergravity. The main idea of the superconformal methods is
that the supergravity theory can be obtained starting by a rigid supersymmetric theory that
has conformal symmetry. This conformal symmetry becomes part of a superconformal group
that is gauged. Then, the extra conformal symmetries (and their superpartner symmetries)
are gauge-fixed. Before the gauge fixing, everything looks like in rigid supersymmetry with
covariantizations. After the gauge fixing it becomes a Poincaré supergravity theory.

This is the generalization of starting with the Lagrangian

L = − 1
2

√
gφ � Cφ = − 1

2

√
gφ �φ + 1

12

√
gRφ2. (5.1)

The conformal covariant D’Alembertian contains the well-known Rφ2 term. This starting
action is invariant under local conformal transformations, which scale the metric and also the
scalar as δφ(x) = �D(x)φ(x). Hence one can fix the value of this scalar as gauge fixing of
these dilatations. A convenient value is φ = √

6MP , which reduces the Lagrangian (5.1) to
the Einstein–Hilbert form:

L = M2
P

2
√

gR. (5.2)

The gauge-fixed value of the scalar thus determines the Planck scale. Remark that to start
this example we started with the action of the scalar with a sign such that the kinetic terms
are negative definite. This leads to positive kinetic energy of the graviton. In general, when
there are more scalars, one has to start with a theory with signature of the kinetic energies
(− + · · · +), and the gauge fixing procedure will remove the negative signature scalar.

To generalize this to supersymmetry, we have to extend the conformal group of
transformations to a superconformal group. This enlarges also the set of bosonic symmetries.
Let us concentrate here on N = 1 in 4 dimensions. In that case, this superconformal group
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includes apart from the conformal group (including the dilatations as above) also a U(1) R-
symmetry. The name R-symmetry refers to the fact that this symmetry does not commute with
supersymmetry. To obtain Poincaré supergravity one has then to start with a Weyl multiplet
and a compensating chiral multiplet. The Weyl multiplet contains the set of gauge fields of the
superconformal algebra. It is the generalization of the gµν field above. The chiral multiplet is
the generalization of the field φ in the above example. In this chiral multiplet sits a complex
field, which we denote by Y, whose modulus is now fixed by gauge fixing of dilatations and
its phase is fixed by the gauge fixing of the mentioned U(1).

When one wants to describe the coupling of n chiral multiplets to supergravity, one starts
with rigid supersymmetry where n + 1 chiral multiplets appear. For rigid supersymmetry, the
kinetic terms of the scalars should define a Kähler manifold. Now we impose that there is
a conformal symmetry. Technically, this is phrased as the presence of a ‘closed homothetic
Killing vector’ k. Then the structure of the Kähler manifold implies automatically another
Killing vector Jk, where J is the complex structure of the manifold. This is gauged by the
gauge field of the U(1) in the Weyl multiplet. The gauge fixing of the dilatations and of the
U(1) then lead to a n-dimensional Hodge–Kähler manifold, which is the geometric structure
of chiral multiplets coupled to supergravity. More details can be found, e.g., in [12, 19, 20].

As an example of the simplifications and the way in which the conformal set-up clarifies
the structure of the theory, let us consider the scalar potential. The F-term is

VF = e(K/M2
P )

[−3M−2
P WW̄ + (DiW)gij̄ (Dj̄ W̄ )

]
,

DiW ≡ ∂iW + M−2
P (∂iK)W,

(5.3)

where K is the Kähler potential and W the superpotential in the supergravity formulation. In
the superconformal set-up this is unified by denoting all the scalars as ZA, which thus includes
the compensator Y and the other scalars zi . Then it is

VF = (∂AW)GAB̄(∂B̄W)|K=−3MP
2 , K = −3Y Ȳ e−K(z,z̄)/(3MP

2),

GAB̄ = ∂A∂B̄K, W = Y 3M−3
P W(z).

(5.4)

Here K is the Kähler potential and W is the superpotential of the rigid theory, and the gauge
fixing of dilatations has fixed the value of K to −3M2

P . A similar simplification occurs for the
value of the D-term in (4.2) (assuming here a gauge-invariant Kähler potential)

Dα = (Re fαβ)−1Pβ,

Pα = 1
2 iki

α∂iK − 1
2 ikī

α∂īK + gξα = (
1
2 ikA

α ∂AK − 1
2 ikĀ

α ∂ĀK
)
K=−3MP

2 .
(5.5)

In the first expression for P occur the Killing vectors in the directions of the physical scalars
ki
α and the Fayet–Iliopoulos term ξα . The latter is in the conformal formulation related to the

component of the Killing vector in the direction of Y, i.e. kY
α = igξαY

/(
3M2

P

)
.

6. Final remarks

We have given an overview of a landscape of possible supergravity theories. Consistency
with supergravity gives also many restrictions on an effective field theory of the fields near a
string theory vacuum. We have illustrated here some general features of supergravity theories,
and given the key ingredients of the superconformal formulation that leads to insights in their
structure.

This has been used to construct the effective N = 1 supergravity theory of cosmic strings
in [11]. The fact that this construction is embedded in the basic N = 1 theory may look as a
shortcoming. However, often such models can be embedded in larger supergravity theories.
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For example, the mentioned cosmic string configuration could be embedded in an N = 2
supergravity [21] in a way such that effectively only some fields of the larger theory are
non-vanishing, which brings us back to the N = 1 set-up. Such embeddings are, however,
non-trivial. There is a main consistency requirement that the reduction of the field equations
of the N = 2 theory to the subsector gives the same result as calculating the field equations of
the reduced Lagrangian. N = 2 consistent truncations have been considered in detail in, e.g.,
[22, 23]. In geometrical terms it says that the submanifold must be ‘geodesic’. This means
that any geodesic in the submanifold should be a geodesic of the ambient manifold.

Such principles also hold when one considers a small set of multiplets in a supergravity
and wants to consider it within a larger model with a larger set of multiplets. For example,
recently we investigated how several N = 2 supergravities with special geometry can be
embedded in each other, such that a solution of the smallest one can be taken over as a solution
of the larger one. That leads to a restricted set of basic homogeneous special geometries [24].
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[21] Achúcarro A, Celi A, Esole M, Van den Bergh J and Van Proeyen A 2006 D-term cosmic strings from N = 2

supergravity J. High Energy Phys. JHEP01(2006)102 (Preprint hep-th/0511001)
[22] Andrianopoli L, D’Auria R and Ferrara S 2002 Supersymmetry reduction of N -extended supergravities in four

dimensions J. High Energy Phys. JHEP03(2002)025 (Preprint hep-th/0110277)
[23] Andrianopoli L, D’Auria R and Ferrara S 2002 Consistent reduction of N = 2 → N = 1 four dimensional

supergravity coupled to matter Nucl. Phys. B 628 387–403 (Preprint hep-th/0112192)
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